3 years ago

Stock Price Correlation Coefficient Prediction with ARIMA-LSTM Hybrid Model.

Hyeong Kyu Choi

Predicting the price correlation of two assets for future time periods is important in portfolio optimization. We apply LSTM recurrent neural networks (RNN) in predicting the stock price correlation coefficient of two individual stocks. RNNs are competent in understanding temporal dependencies. The use of LSTM cells further enhances its long term predictive properties. To encompass both linearity and nonlinearity in the model, we adopt the ARIMA model as well. The ARIMA model filters linear tendencies in the data and passes on the residual value to the LSTM model. The ARIMA LSTM hybrid model is tested against other traditional predictive financial models such as the full historical model, constant correlation model, single index model and the multi group model. In our empirical study, the predictive ability of the ARIMA-LSTM model turned out superior to all other financial models by a significant scale. Our work implies that it is worth considering the ARIMA LSTM model to forecast correlation coefficient for portfolio optimization.

Publisher URL: http://arxiv.org/abs/1808.01560

DOI: arXiv:1808.01560v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.