3 years ago

Work Statistics, Loschmidt Echo and Information Scrambling in Chaotic Quantum Systems.

Aurélia Chenu, Adolfo del Campo, Javier Molina-Vilaplana

Characterizing the work statistics of driven complex quantum systems is generally challenging because of the exponential growth with the system size of the number of transitions involved between different energy levels. We consider the quantum work distribution associated with the driving of chaotic quantum systems described by random matrix Hamiltonians and characterize exactly the work statistics associated with a sudden quench for arbitrary temperature and system size. Knowledge of the work statistics yields the Loschmidt echo dynamics of an entangled state between two copies of the system of interest, the thermofield double state. This echo dynamics is dictated by the spectral form factor. We discuss its relation to frame potentials and its use to assess information scrambling.

Publisher URL: http://arxiv.org/abs/1804.09188

DOI: arXiv:1804.09188v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.