3 years ago

Connecting Compact Star-forming and Extended Star-forming Galaxies at Low-redshift: Implications for Galaxy Compaction and Quenching.

Zhizheng Pan, Enci Wang, Xu Kong

Previous findings show that the existence of dense cores or bulges is the prerequisite for quenching a galaxy, leading to a proposed two-step quenching scenario: compaction and quenching. In this scenario, galaxies first grow their cores to a stellar mass surface density threshold and subsequently quenching occurs, suggesting that galaxies evolve from extended star-forming galaxies (eSFGs), through compact star-forming galaxies (cSFGs), to quenched population. In this work, we aim at examining the possible evolutionary link between eSFGs and cSFGs by identifying the trends in star formation rate (SFR), gas-phase metallicity and HI content, since one would naturally expect that galaxies evolve along the track of cold gas consumption and metal enhancement. We select a volume-limited sample of 15,933 galaxies with stellar mass above $10^{9.5}M_{\odot}$ and redshift of 0.02 < z < 0.05 from the NASA-Sloan-Atlas catalog within the ALFALFA footprint. The cSFGs on average exhibit similar or slightly higher SFRs of $\sim$0.06 dex and significantly higher gas-phase metallicity (up to 0.2 dex at low mass) with respect to the eSFGs, while the cSFGs dominate the galaxy population of the most intense star formation activities. More importantly, overall the median HI content and gas depletion time of cSFGs are about half of eSFGs. Our result supports the compaction and quenching scenario that galaxies evolve and grow their cores along the track of cold gas consumption and metal enhancement. The environments of eSFGs and cSFGs are indistinguishable, suggesting that the compaction process is independent of any environmental effects at least for low-redshift universe.

Publisher URL: http://arxiv.org/abs/1808.05929

DOI: arXiv:1808.05929v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.