3 years ago

Outperforming Good-Turing: Preliminary Report.

Meir Feder, Amichai Painsky

Estimating a large alphabet probability distribution from a limited number of samples is a fundamental problem in machine learning and statistics. A variety of estimation schemes have been proposed over the years, mostly inspired by the early work of Laplace and the seminal contribution of Good and Turing. One of the basic assumptions shared by most commonly-used estimators is the unique correspondence between the symbol's sample frequency and its estimated probability. In this work we tackle this paradigmatic assumption; we claim that symbols with "similar" frequencies shall be assigned the same estimated probability value. This way we regulate the number of parameters and improve generalization. In this preliminary report we show that by applying an ensemble of such regulated estimators, we introduce a dramatic enhancement in the estimation accuracy (typically up to 50%), compared to currently known methods. An implementation of our suggested method is publicly available at the first author's web-page.

Publisher URL: http://arxiv.org/abs/1807.02287

DOI: arXiv:1807.02287v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.