3 years ago

LP Relaxation and Tree Packing for Minimum $k$-cuts.

Chao Xu, Chandra Chekuri, Kent Quanrud

Karger used spanning tree packings to derive a near linear-time randomized algorithm for the global minimum cut problem as well as a bound on the number of approximate minimum cuts. This is a different approach from his well-known random contraction algorithm. Thorup developed a fast deterministic algorithm for the minimum $k$-cut problem via greedy recursive tree packings.

In this paper we revisit properties of an LP relaxation for $k$-cut proposed by Naor and Rabani, and analyzed by Chekuri, Guha and Naor. We show that the dual of the LP yields a tree packing, that when combined with an upper bound on the integrality gap for the LP, easily and transparently extends Karger's analysis for mincut to the $k$-cut problem. In addition to the simplicity of the algorithm and its analysis, this allows us to improve the running time of Thorup's algorithm by a factor of $n$. We also improve the bound on the number of $\alpha$-approximate $k$-cuts. Second, we give a simple proof that the integrality gap of the LP is $2(1-1/n)$. Third, we show that an optimum solution to the LP relaxation, for all values of $k$, is fully determined by the principal sequence of partitions of the input graph. This allows us to relate the LP relaxation to the Lagrangian relaxation approach of Barahona and Ravi and Sinha; it also shows that the idealized recursive tree packing considered by Thorup gives an optimum dual solution to the LP. This work arose from an effort to understand and simplify the results of Thorup.

Publisher URL: http://arxiv.org/abs/1808.05765

DOI: arXiv:1808.05765v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.