3 years ago

Circular RNA architecture and differentiation during leaf bud to young leaf development in tea ( Camellia sinensis )

Jeffrey L. Bennetzen, Yan Hou, Fangdong Li, Jie Yu, Chaoling Wei, Wei Tong, Qiying Zhou

Abstract

Main conclusion

Circular RNA (circRNA) discovery, expression patterns and experimental validation in developing tea leaves indicates its correlation with circRNA-parental genes and potential roles in ceRNA interaction network.

Circular RNAs (circRNAs) have recently emerged as a novel class of abundant endogenous stable RNAs produced by circularization with regulatory potential. However, identification of circRNAs in plants, especially in non-model plants with large genomes, is challenging. In this study, we undertook a systematic identification of circRNAs from different stage tissues of tea plant (Camellia sinensis) leaf development using rRNA-depleted circular RNA-seq. By combining two state-of-the-art detecting tools, we characterized 3174 circRNAs, of which 342 were shared by each approach, and thus considered high-confidence circRNAs. A few predicted circRNAs were randomly chosen, and 20 out of 24 were experimental confirmed by PCR and Sanger sequencing. Similar in other plants, tissue-specific expression was also observed for many C. sinensis circRNAs. In addition, we found that circRNA abundances were positively correlated with the mRNA transcript abundances of their parental genes. qRT-PCR validated the differential expression patterns of circRNAs between leaf bud and young leaf, which also indicated the low expression abundance of circRNAs compared to the standard mRNAs from the parental genes. We predicted the circRNA-microRNA interaction networks, and 54 of the differentially expressed circRNAs were found to have potential tea plant miRNA binding sites. The gene sets encoding circRNAs were significantly enriched in chloroplasts related GO terms and photosynthesis/metabolites biosynthesis related KEGG pathways, suggesting the candidate roles of circRNAs in photosynthetic machinery and metabolites biosynthesis during leaf development.

Publisher URL: https://link.springer.com/article/10.1007/s00425-018-2983-x

DOI: 10.1007/s00425-018-2983-x

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.