3 years ago

A dichotomy concerning uniform boundedness of Riesz transforms on Riemannian manifolds.

Alex Amenta, Leonardo Tolomeo

Given a sequence of complete Riemannian manifolds $(M_n)$ of the same dimension, we construct a complete Riemannian manifold $M$ such that for all $p \in (1,\infty)$ the $L^p$-norm of the Riesz transform on $M$ dominates the $L^p$-norm of the Riesz transform on $M_n$ for all $n$. Thus we establish the following dichotomy: given $p$ and $d$, either there is a uniform $L^p$ bound on the Riesz transform over all complete $d$-dimensional Riemannian manifolds, or there exists a complete Riemannian manifold with Riesz transform unbounded on $L^p$.

Publisher URL: http://arxiv.org/abs/1808.06383

DOI: arXiv:1808.06383v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.