3 years ago

Gelation of plasmonic metal oxide nanocrystals by polymer-induced depletion attractions [Engineering]

Gelation of plasmonic metal oxide nanocrystals by polymer-induced depletion attractions [Engineering]
Beth A. Lindquist, Ankit Agrawal, Camila A. Saez Cabezas, Delia J. Milliron, Thomas M. Truskett, Gary K. Ong, Ryan B. Jadrich

Gelation of colloidal nanocrystals emerged as a strategy to preserve inherent nanoscale properties in multiscale architectures. However, available gelation methods to directly form self-supported nanocrystal networks struggle to reliably control nanoscale optical phenomena such as photoluminescence and localized surface plasmon resonance (LSPR) across nanocrystal systems due to processing variabilities. Here, we report on an alternative gelation method based on physical internanocrystal interactions: short-range depletion attractions balanced by long-range electrostatic repulsions. The latter are established by removing the native organic ligands that passivate tin-doped indium oxide (ITO) nanocrystals while the former are introduced by mixing with small PEG chains. As we incorporate increasing concentrations of PEG, we observe a reentrant phase behavior featuring two favorable gelation windows; the first arises from bridging effects while the second is attributed to depletion attractions according to phase behavior predicted by our unified theoretical model. Our assembled nanocrystals remain discrete within the gel network, based on X-ray scattering and high-resolution transmission electron microscopy. The infrared optical response of the gels is reflective of both the nanocrystal building blocks and the network architecture, being characteristic of ITO nanocrystals’ LSPR with coupling interactions between neighboring nanocrystals.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.