4 years ago

Functional genomics assessment of narcotic and specific acting chemical pollutants using E. coli

Functional genomics assessment of narcotic and specific acting chemical pollutants using E. coli
The knowledge of gene-chemical interaction can be used to derive toxicological mechanism of chemical pollutants, therefore, it might be useful to discriminate chemicals with different mechanisms. In this study, three narcotic chemicals (4-chlorophenol (4-CP), 3, 4-dichloroaniline (DCA) and 2, 2, 2-trichloroethanol (TCE)) and three specific acting chemicals (triclosan (TCS), clarithromycin (CLARY), sulfamethoxazole (SMX)) were assessed by Escherichia coli (E. coli) genome-wide knockout screening. 66, 97, 88, 144, 198 and 180 initial robust hits were identified by exposure to 4-CP, DCA, TCE, TCS, CLARY and SMX with two replicates at the concentration of IC50, respectively. The average fold change values of responsive mutants to the three narcotic chemicals were smaller than the three specific acting chemicals. The common gene ontology (GO) term of biological process enriched by the three narcotic chemicals was “response to external stimulus” (GO: 0009605). Other GO terms like “lipopolysaccharide biosynthetic process” (induced by 4-CP) and “purine nucleotide biosynthetic process” (induced by DCA) were also influenced by the narcotic chemicals. The toxic target of three known specific acting chemicals could be validated by GSEA of responsive genes. Four genes (flhC, fliN, fliH and flhD) might serve as potential biomarkers to distinguish narcotic chemicals and specific acting chemicals. The E. coli functional genomic approach presented here has shown great potential not only for the molecular mechanistic screening of chemicals, rather it can discriminate chemicals based on their mode-of-action.

Publisher URL: www.sciencedirect.com/science

DOI: S0269749117328117

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.