3 years ago

Age-dependent antioxidant responses to the bioconcentration of microcystin-LR in the mysid crustacean, Neomysis awatschensis

Age-dependent antioxidant responses to the bioconcentration of microcystin-LR in the mysid crustacean, Neomysis awatschensis
Microcystins (MCs) are naturally occurring algal toxins in the aquatic environment and pose a serious threat to the ecosystem. In general, aquatic populations are structured by organisms of different ages, with varying degrees of biochemical and physiological responses. In this study, juvenile and adult marine mysids (Neomysis awatschensis) were exposed to MC-Leucine Arginine (MC-LR) (0.1, 1, and 10 μg L−1) for 7 days, and the bioconcentration dynamics and responses of antioxidant defense system were measured during the exposure and additional depuration periods (7 days). MC-LR bioconcentrated in a dose-dependent manner, from a threshold concentration of 1 μg L−1 in both stages, and the levels reduced gradually during the depuration phase. Bioconcentration patterns of MC-LR were highly age-specific, as juvenile mysids showed peaks during the exposure period, whereas adults exhibited a peak on the first day of depuration. After exposure to 10 μg L−1 concentration, elevated levels of malondialdehyde (MDA) and glutathione (GSH) were observed during the late (days 5 and 7) exposure and early (days 1 and 3) depuration periods in juvenile mysids, while adult mysids showed a peak on day 7 of the exposure period. Age-specific responses were also observed in the enzymatic activities of glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR). Juvenile mysids showed a significant elevation in all enzymatic activities during the exposure and/or depuration phase upon exposure to 10 μg L−1 MC-LR, but only CAT and SOD enzymes showed significant changes during the exposure and/or depuration periods in adults. Overall, our results indicate the bioconcentration potential of MC-LR and its threshold in the marine mysid, in addition to age-specific MC-LR dynamics and subsequent biochemical responses.

Graphical abstract

image

Teaser

Evidence on the age-specific bioconcentration of microcystin in marine mysid and subsequent biochemical responses is extensively studied.

Publisher URL: www.sciencedirect.com/science

DOI: S0269749117329032

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.