4 years ago

Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes

Semi-continuous capacitive deionization using multi-channel flow stream and ion exchange membranes
Capacitive deionization (CDI) is a promising desalination process, but conventional static electrode CDI operates by sequentially cycling through charging and discharging to produce fresh and concentrated water, respectively. However, an effective continuous operation is desirable for optimized system operation. Here, we report a semi-continuous desalination process with a novel modified CDI cell architecture using a multi-channel flow stream and ion exchange membranes (MC-MCDI). This MC-MCDI consists of two channels including side and middle channels with a pair of cation and anion ion exchange membranes where the feed streams can be separately distributed without mixing. The MC-MCDI design allows semi-continuous production of clean water since the separated middle and side channels are alternately desalinated and regenerated: one channel is being desalinated while the other channel is regenerated. Therefore, the cell can produce clean water during both charging and discharging, enabling semi-continuous operation. In addition, with the benefit from similar cell configuration with membrane CDI, the MC-MCDI design exhibits a high salt adsorption capacity (SAC) of 22±2mg/g and charge efficiency of 90±2% at middle and side channels during charging and discharging with reverse voltage operation (cell voltage of +1.2V vs. −1.2V).

Publisher URL: www.sciencedirect.com/science

DOI: S0011916417317265

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.