3 years ago

A Branching Process Model of Heterogeneous DNA Damages caused by Radiotherapy in in vitro Cell Cultures

This paper deals with the dynamic modeling and simulation of cell damage heterogeneity and associated mutant cell phenotypes in the therapeutic responses of cancer cell populations submitted to a radiotherapy session during in vitro assays. Each cell is described by a finite number of phenotypic states with possible transitions between them. The population dynamics is then given by an age-dependent multi-type branching process. From this representation, we obtain formulas for the average size of the global survival population as well as the one of subpopulations associated with 10 mutation phenotypes. The proposed model has been implemented into Matlab© and the numerical results corroborate the ability of the model to reproduce four major types of cell responses: delayed growth, anti-proliferative, cytostatic and cytotoxic.

Publisher URL: www.sciencedirect.com/science

DOI: S0025556417300299

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.