4 years ago

Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit

Beam-Editing Coding Metasurfaces Based on Polarization Bit and Orbital-Angular-Momentum-Mode Bit
Tian Yi Chen, Tie Jun Cui, Chuan Bo Shi, Ahsan Noor, Guo Dong Bai, Qian Ma
Coding metasurfaces are aimed at representing digital information of the metasurface, usually by programing digital unit cells to control electromagnetic waves. However, some information sequences cannot be recognized by the receiver, because of nonorthogonality of the usual phase codes. Here, new coding method is proposed to encode information with orthogonal parameters in the emitting beam, which reduces information loss in the system. A vector beam modulator is proposed by combining orthogonal polarizations and orbital angular momentum (OAM) modes. A normal incident wave can be modulated by OAM-mode bit and polarization bit, which are regarded as specific information by the receiver. A polarization converter is used to realize the polarization selection (polarization bit) and phase control, independently. The phase patterns on the coding metasurfaces can be programed to realize the designed OAM modes (OAM bits) in the microwave frequency. Three schemes are presented to emit multiple OAM modes in dual polarizations, one of which is manufactured and measured for near and far fields. The simulations and experiments are in outstanding agreement, verifying the excellent performance of the proposed schemes. This work has great potential in communication applications of coding metasurfaces. A new design method is proposed for coding metasurfaces to encode the information with orthogonal polarization bit and orbital angular momentum mode bit in the emitting beam. Compared to most coding metasurfaces presented before, this method can reduce information loss in the system dramatically.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adom.201700548

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.