3 years ago

Breaking bonds, Forming Nanographene Diradicals with Pressure

Jon Mattin Matxain, David Casanova, Carlos Gómez Garcia, Paula Mayorga Burrezo, Jean Francois Morin, Joel Boismenu-lavoie, Maude Desroches, Juan Casado, Miriam Peña Alvarez
New anthanthrone-based polycyclic scaffolds possessing peripheral crowed quinodimethanes have been prepared. While the compounds adopt a closed-shell butterfly shaped structure in the ground state, a curved-to-planar fluxional dynamic inversion is accessible with a low energy barrier through a diradical transition-state. Mainly driven by the release of strain attributed to the steric hindrance at the peri position of the anthanthrone core, a low-lying diradical state is accessible through planarization of the core. The most significant aspect is that planarization is also achieved by application of mild pressure in the solid state, wherein the diradical remains kinetically trapped. Cross-information from quantum chemistry, 1H NMR and Raman spectroscopies together with magnetic experiments allow us to propose the formation of a nanographene-like structure which possesses unpaired electrons radical centers mainly localized at the exo-anthanthrone carbons bearing phenyl substituents.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201708740

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.