4 years ago

Direct Synthesis of Polymer Nanotubes via Aqueous Dispersion Polymerization of Cyclodextrin/Styrene Complex

Min Zeng, Xiaosong Wang, Meng Huo, Xi Chen, Liao Peng, Jinying Yuan, Lei Liu, Anchao Feng
We report a one-step synthesis of nanotubes by RAFT dispersion polymerization of cyclodextrin/styrene (CD/St) complexes directly in water. The resulted amphiphilic PEG-b-PS diblock copolymers self-assemble in situ into nanoparticles with various morphologies. Spheres, worms, lamellae, and nanotubes were controllably obtained. Because of the complexation, the swelling degree of polystyrene (PS) blocks by free St is limited, resulting limited mobility of PS chains. Consequently, kinetically trapped lamellae and nanotubes were obtained instead of spherical vesicles. During the formation of nanotubes, small vesicles firstly formed at the ends of the tape-like lamellae, then grew and fused into nanotubes with limited chain rearrangement. The introduction of host-guest interaction based on CDs enables the aqueous dispersion polymerization of water-immiscible monomers, and produces kinetically trapped nanostructures, which could be a powerful technique for nanomaterials synthesis.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201709129

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.