4 years ago

New Insights into the Activation and Deactivation of Au/CeZrO4 in the Low-Temperature Water-Gas Shift Reaction

Liwei Niu, David Morgan, Xi Liu, Stanislaw Golunski, Christopher Kiely, Graham John Hutchings, Yongwang Li, Hans Niemantsverdriet, Simon Freakley, Qian He, Ewa Nowicka, Sultan Althahban, James Carter
Gold on ceria-zirconia is an active catalyst for the low-temperature water-gas shift reaction (LTS), a key stage of upgrading H2 reformate streams for fuel cells. However, this catalyst rapidly deactivates and the mechanism remains unclear. Using stop-start scanning transmission electron microscopy (STEM) to follow the exact same area of the sample at different stages of the LTS reaction, as well as complementary X-ray photoelectron spectroscopy, we observed the activation and deactivation of the catalyst at various stages. During the heating of the catalyst to reaction temperature, we observed the formation of small Au nanoparticles (1-2 nm) from sub-nm Au species. These nanoparticles then agglomerated further over 48 h on-stream, most rapidly in the first 5 h when the highest rate of deactivation was observed. These findings suggest that the primary deactivation process consists of the loss of active sites through the agglomeration and possible dewetting of Au nanoparticles.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201709708

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.