4 years ago

Near-Infrared-Light-Driven Hydrogen Evolution from Water using a Polypyridyl Triruthenium Photosensitizer

Kosei Yamauchi, Keiya Yamamoto, Yutaro Tsuji, Ken Sakai
In order to realize the artificial photosynthetic devices splitting water to H2 and O2 (2H2O + hν 2H2 + O2), it is desirable to utilize a wider wavelength range of light that extends to a lower energy region of solar spectrum. Here we report a triruthenium photosensitizer [Ru3(dmbpy)6(μ-HAT)]6+ (dmbpy = 4,4'-dimethyl-2,2'-bipyridine, HAT = 1,4,5,8,9,12-hexaazatriphenylene), which absorbs near-infrared light up to 800 nm based on its 1MLCT transition. Importantly, [Ru3(dmbpy)6(μ-HAT)]6+ is found to be the first example of a photosensitizer which can drive H2 evolution under the illumination of near-infrared light above 700 nm. The electrochemical and photochemical studies reveal that the reductive quenching within the ion-pair adducts of [Ru3(dmbpy)6(μ-HAT)]6+ and ascorbate anions affords a singly reduced form of [Ru3(dmbpy)6(μ-HAT)]6+, which is used as a reducing equivalent in the subsequent water reduction process.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201708996

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.