5 years ago

The human guanylate-binding proteins hGBP-1 and hGBP-5 cycle between monomers and dimers only

The human guanylate-binding proteins hGBP-1 and hGBP-5 cycle between monomers and dimers only
Miriam Kutsch, Christian Herrmann, Sergii Shydlovskyi, Semra Ince
Belonging to the dynamin superfamily of large GTPases, human guanylate-binding proteins (hGBPs) comprise a family of seven isoforms (hGBP-1 to hGBP-7) that are strongly upregulated in response to interferon-γ and other cytokines. Accordingly, several hGBPs are found to exhibit various cellular functions encompassing inhibitory effects on cell proliferation, tumor suppression as well as antiviral and antibacterial activity; however, their mechanism of action is only poorly understood. Often, cellular functions of dynamin-related proteins are closely linked to their ability to form nucleotide-dependent oligomers, a feature that also applies to hGBP-1 and hGBP-5. hGBPs are described as monomers, dimers, tetramers, and higher oligomeric species, the function of which is not clearly established. Therefore, this work focused on the oligomerization capability of hGBP-1 and hGBP-5, which are reported to assemble to homodimers and homotetramers. Employing independent methods such as size-exclusion chromatography, which relies on the hydrodynamic radius, and multiangle light scattering, which relies on the mass of the protein, revealed that previous interpretations regarding the size of the proteins and their complexes have to be revised. Additional studies using inter- and intramolecular Förster resonance energy transfer demonstrated that nucleotide-triggered intramolecular structural changes lead to a more extended shape of hGBP-1 being responsible for the appearance of larger oligomeric species. Thus, previously reported tetrameric and dimeric species of hGBP-1 and hGBP-5 were unmasked as dimers and monomers, respectively, with their shapes depending on both the bound nucleotide and the ionic strength of the solution. The biological functions of human guanylate binding proteins (hGBPs) are dependent on their oligomerization. Here, we present a modified model for the oligomerization of hGBP-1 and hGBP-5. Both isoforms cycle between monomers and dimers only. Interestingly, hGBP-1's dimerization depends on GTP hydrolysis, whereas hGBP-5 forms dimers upon GTP binding, revealing mechanistic differences between the two isoforms.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/febs.14126

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.