3 years ago

Asymmetric Actor Critic for Image-Based Robot Learning.

Pieter Abbeel, Wojciech Zaremba, Lerrel Pinto, Marcin Andrychowicz, Peter Welinder

Deep reinforcement learning (RL) has proven a powerful technique in many sequential decision making domains. However, Robotics poses many challenges for RL, most notably training on a physical system can be expensive and dangerous, which has sparked significant interest in learning control policies using a physics simulator. While several recent works have shown promising results in transferring policies trained in simulation to the real world, they often do not fully utilize the advantage of working with a simulator. In this work, we exploit the full state observability in the simulator to train better policies which take as input only partial observations (RGBD images). We do this by employing an actor-critic training algorithm in which the critic is trained on full states while the actor (or policy) gets rendered images as input. We show experimentally on a range of simulated tasks that using these asymmetric inputs significantly improves performance. Finally, we combine this method with domain randomization and show real robot experiments for several tasks like picking, pushing, and moving a block. We achieve this simulation to real world transfer without training on any real world data.

Publisher URL: http://arxiv.org/abs/1710.06542

DOI: arXiv:1710.06542v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.