4 years ago

Replacement AutoEncoder: A Privacy-Preserving Algorithm for Sensory Data Analysis.

Mohammad Malekzadeh, Richard G. Clegg, Hamed Haddadi

An increasing number of sensors on mobile, Internet of things (IoT), and wearable devices generate time-series measurements of physical activities. Though access to the sensory data is critical to the success of many beneficial applications such as health monitoring or activity recognition, a wide range of potentially sensitive information about the individuals can also be discovered through these datasets and this cannot easily be protected using traditional privacy approaches.

In this paper, we propose an integrated sensing framework for managing access to personal time-series data in order to provide utility while protecting individuals' privacy. We introduce \textit{Replacement AutoEncoder}, a novel feature-learning algorithm which learns how to transform discriminative features of multidimensional time-series that correspond to sensitive inferences, into some features that have been more observed in non-sensitive inferences, to protect users' privacy. The main advantage of Replacement AutoEncoder is its ability to keep important features of desired inferences unchanged to preserve the utility of the data. We evaluate the efficacy of the algorithm with an activity recognition task in a multi-sensing environment using extensive experiments on three benchmark datasets. We show that it can retain the recognition accuracy of state-of-the-art techniques while simultaneously preserving the privacy of sensitive information. We use a Generative Adversarial Network to attempt to detect the replacement of sensitive data with fake non-sensitive data. We show that this approach does not detect the replacement unless the network can train using the users' original unmodified data.

Publisher URL: http://arxiv.org/abs/1710.06564

DOI: arXiv:1710.06564v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.