3 years ago

Minimizing Task Space Frechet Error via Efficient Incremental Graph Search.

Rachel Holladay, Oren Salzman, Siddhartha Srinivasa

We present an algorithm that generates a collision-free configuration-space path that closely follows, according to the discrete Fr\'echet metric, a desired path in task space. By leveraging the Fr\'echet metric and other tools from computational geometry, we approximate the search space using a cross-product graph. This structure allows us to efficiently search for the solution using a simple variant of Dijkstra's graph search algorithm. Additionally, we can incrementally update and improve the solution in an anytime fashion. We compare multiple proposed densification strategies and show that our algorithm outperforms a previously proposed optimization-based approach.

Publisher URL: http://arxiv.org/abs/1710.06738

DOI: arXiv:1710.06738v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.