A non-ordinary peridynamics implementation for anisotropic materials.
Peridynamics (PD) represents a new approach for modelling fracture mechanics, where a continuum domain is modelled through particles connected via physical bonds. This formulation allows us to model crack initiation, propagation, branching and coalescence without special assumptions. Up to date, anisotropic materials were modelled in the PD framework as different isotropic materials (for instance, fibre and matrix of a composite laminate), where the stiffness of the bond depends on its orientation. A non-ordinary state-based formulation will enable the modelling of generally anisotropic materials, where the material properties are directly embedded in the formulation. Other material models include rocks, concrete and biomaterials such as bones. In this paper, we implemented this model and validated it for anisotropic composite materials. A composite damage criterion has been employed to model the crack propagation behaviour. Several numerical examples have been used to validate the approach, and compared to other benchmark solution from the finite element method (FEM) and experimental results when available.
Publisher URL: http://arxiv.org/abs/1710.06827
DOI: arXiv:1710.06827v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.