Shannon Entropy Estimation in $\infty$-Alphabets from Convergence Results.
The problem of Shannon entropy estimation in countable infinite alphabets is revisited from the adoption of convergence results of the entropy functional. Sufficient conditions for the convergence of the entropy are used, including scenarios with both finitely and infinitely supported distributions. From this angle, four plug-in histogram-based estimators are studied showing strong consistency and rate of convergences results for the case of finite and unknown supported distributions and families of distributions with summable tail bounded conditions.
Publisher URL: http://arxiv.org/abs/1710.06835
DOI: arXiv:1710.06835v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.