3 years ago

Can Machine Learning Create an Advocate for Foster Youth?.

James Heyes, Darrell Booker, Meredith Brindley

Statistics are bleak for youth aging out of the United States foster care system. They are often left with few resources, are likely to experience homelessness, and are at increased risk of incarceration and exploitation. The Think of Us platform is a service for foster youth and their advocates to create personalized goals and access curated content specific to aging out of the foster care system. In this paper, we propose the use of a machine learning algorithm within the Think of Us platform to better serve youth transitioning to life outside of foster care. The algorithm collects and collates publicly available figures and data to inform caseworkers and other mentors chosen by the youth on how to best assist foster youth. It can then provide valuable resources for the youth and their advocates targeted directly towards their specific needs. Finally, we examine machine learning as a support system and aid for caseworkers to buttress and protect vulnerable young adults during their transition to adulthood.

Publisher URL: http://arxiv.org/abs/1710.06845

DOI: arXiv:1710.06845v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.