4 years ago

On the robust hardness of Gr\"obner basis computation.

David Rolnick, Gwen Spencer

We introduce a new problem in the approximate computation of Gr\"obner bases that allows the algorithm to ignore a constant fraction of the generators - of the algorithm's choice - then compute a Gr\"obner basis for the remaining polynomial system. The set ignored is subject to one quite-natural structural constraint. For lexicographic orders, when the discarded fraction is less than $(1/4-\epsilon)$, for $\epsilon>0$, we prove that this problem cannot be solved in polynomial time, even when the original polynomial system has maximum degree 3 and each polynomial contains at most 3 variables. Qualitatively, even for sparse systems composed of low-degree polynomials, we show that Gr\"obner basis computation is robustly hard: even producing a Gr\"obner basis for a large subset of the generators is NP-hard.

Publisher URL: http://arxiv.org/abs/1511.06436

DOI: arXiv:1511.06436v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.