Infinite-Label Learning with Semantic Output Codes.
We develop a new statistical machine learning paradigm, named infinite-label learning, to annotate a data point with more than one relevant labels from a candidate set, which pools both the finite labels observed at training and a potentially infinite number of previously unseen labels. The infinite-label learning fundamentally expands the scope of conventional multi-label learning, and better models the practical requirements in various real-world applications, such as image tagging, ads-query association, and article categorization. However, how can we learn a labeling function that is capable of assigning to a data point the labels omitted from the training set? To answer the question, we seek some clues from the recent work on zero-shot learning, where the key is to represent a class/label by a vector of semantic codes, as opposed to treating them as atomic labels. We validate the infinite-label learning by a PAC bound in theory and some empirical studies on both synthetic and real data.
Publisher URL: http://arxiv.org/abs/1608.06608
DOI: arXiv:1608.06608v2
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.