3 years ago

DNN and CNN with Weighted and Multi-task Loss Functions for Audio Event Detection.

Alfred Mertins, Timo Gerkmann, Martin Krawczyk-Becker, Huy Phan

This report presents our audio event detection system submitted for Task 2, "Detection of rare sound events", of DCASE 2017 challenge. The proposed system is based on convolutional neural networks (CNNs) and deep neural networks (DNNs) coupled with novel weighted and multi-task loss functions and state-of-the-art phase-aware signal enhancement. The loss functions are tailored for audio event detection in audio streams. The weighted loss is designed to tackle the common issue of imbalanced data in background/foreground classification while the multi-task loss enables the networks to simultaneously model the class distribution and the temporal structures of the target events for recognition. Our proposed systems significantly outperform the challenge baseline, improving F-score from 72.7% to 90.0% and reducing detection error rate from 0.53 to 0.18 on average on the development data. On the evaluation data, our submission obtains an average F1-score of 88.3% and an error rate of 0.22 which are significantly better than those obtained by the DCASE baseline (i.e. an F1-score of 64.1% and an error rate of 0.64).

Publisher URL: http://arxiv.org/abs/1708.03211

DOI: arXiv:1708.03211v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.