4 years ago

Rapid Synthesis of Rhodium–Palladium Alloy Nanocatalysts

Rapid Synthesis of Rhodium–Palladium Alloy Nanocatalysts
Pranaw Kunal, Hao Li, Graeme Henkelman, Graham W. Piburn, Simon M. Humphrey
The chemistry of metastable RhPd alloys is not well understood, and well-characterized nanoparticle (NP) examples remain rare. Well-defined and near-monodisperse RhPd NPs were prepared in a simple one-pot approach by using microwave-assisted or conventional heating in reaction times as short as 30 s. The catalytic hydrogenation activity of supported RhPd NP catalysts revealed that short synthesis times resulted in the most-active and most-stable hydrogenation catalysts, whereas longer synthesis times promoted partial Rh-Pd core–shell segregation. Relative to Rh NPs, RhPd NPs resisted deactivation over longer reaction times. Density functional theory (DFT) was employed to estimate the binding energies of H and alkenes on (1 1 1) Rh, Pd, and Rh0.5Pd0.5 surfaces. The DFT results concurred with experiment and concluded that the alkene hydrogenation activity trend was of the order Pd

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/cctc.201701133

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.