3 years ago

Comparative Study of Diverse Copper Zeolites for the Conversion of Methane into Methanol

Comparative Study of Diverse Copper Zeolites for the Conversion of Methane into Methanol
Ali Mansouri, Sang Hyun Ahn, Min Bum Park, Marco Ranocchiari, Jeroen A. van Bokhoven
The characterization and reactive properties of copper zeolites with twelve framework topologies (MOR, EON, MAZ, MEI, BPH, FAU, LTL, MFI, HEU, FER, SZR, and CHA) are compared in the stepwise partial oxidation of methane into methanol. Cu2+ ion-exchanged zeolite omega, a MAZ-type material, reveals the highest yield (86 μmol g(cat.)−1) among these materials after high-temperature activation and liquid methanol extraction. The high yield is ascribed to the relatively high density of copper–oxo active species, which form in its three-dimensional 8-membered (MB) ring channels. In situ UV/Vis studies show that diverse copper species form in different zeolites after high-temperature activation, suggesting that there are no universally active species. Nonetheless, there are some dominant factors required for achieving high methanol yields: 1) highly dispersed copper–oxo species; 2) large amount of exchanged copper in small-pore zeolites; 3) moderately high temperature of activation; and 4) use of proton form zeolite precursors. Cu-omega and Cu-mordenite, with the proton form of mordenite as the precursor, yield methanol after activation in oxygen and reaction with methane at only 200 °C, that is, under isothermal conditions. Four reliable design rules are proposed for copper zeolites for conversion of methane into methanol: 1) composed with small pores; 2) containing a large amount of copper content in a well-dispersed manner; 3) activated at moderately high temperature under flowing oxygen; and 4) prepared from proton-form precursor.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/cctc.201700768

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.