3 years ago

Immobilization of palladium nanoparticles on ionic liquid-triethylammonium chloride functionalized magnetic nanoparticles: As a magnetically separable, stable and recyclable catalyst for Suzuki-Miyaura cross-coupling reactions

Immobilization of palladium nanoparticles on ionic liquid-triethylammonium chloride functionalized magnetic nanoparticles: As a magnetically separable, stable and recyclable catalyst for Suzuki-Miyaura cross-coupling reactions
A facile procedure was applied to successfully synthesize novel Pd nanoparticles immobilized on triethanolamine-functionalized magnetic nanoparticles [Fe3O4/IL/Pd]. Diverse characterizations (HR-TEM, XRD, FT-IR, TGA, EDX, FE-SEM, ICP, XPS and VSM) were carried out to identify intrinsic traits of the nanoparticles. At room temperature, Fe3O4/IL/Pd demonstrated high catalytic activity toward Suzuki-Miyaura cross-coupling reactions in aqueous solution. Based on the results, Fe3O4/IL/Pd acted as zwitterionic IL-type heterogeneous catalyst, which could be separated from the reaction mixture, conveniently. Moreover, it exhibited excellent recyclability for at least eight cycles without considerable loss of its activity.

Publisher URL: www.sciencedirect.com/science

DOI: S0040403917312297

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.