3 years ago

N–O Bond as External Oxidant in Group 9 Cp*M(III)-Catalyzed Oxidative C–H Coupling Reactions

N–O Bond as External Oxidant in Group 9 Cp*M(III)-Catalyzed Oxidative C–H Coupling Reactions
Honggen Wang, Qingjiang Li, Shang-Shi Zhang, Xu-Ge Liu, Hui Gao
Group 9 Cp*M(III) (M = Co, Rh, Ir) complexes have been extensively investigated as catalysts in a variety of C–H activation reactions. Typically, late metal-based silver or copper salt was used (while needed) as oxidant in these catalytic systems. Herein, we report our discovery of a potentially general type of N–O bond-containing oxidants, which allowed the mild and efficient syntheses of isocoumarins, isoquinolines, isoquinolinone, and styrenes via C–H activation catalyzed by group 9 Cp*M(III) complexes. By using Cp*Rh(III)-catalyzed isocoumarin synthesis as a model reaction, experimental and theoretical mechanistic studies were conducted. The results concluded that the Rh(III)–Rh(I)–Rh(III) rather than the Rh(III)–Rh(V)–Rh(III) pathway is more likely involved in the mechanism, and both the C–H activation and oxidation of the Cp*Rh(I) species were involved in the turnover-limiting step.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b00677

DOI: 10.1021/acscatal.7b00677

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.