5 years ago

Fine Tuning the Redox Potentials of Carbazolic Porous Organic Frameworks for Visible-Light Photoredox Catalytic Degradation of Lignin β-O-4 Models

Fine Tuning the Redox Potentials of Carbazolic Porous Organic Frameworks for Visible-Light Photoredox Catalytic Degradation of Lignin β-O-4 Models
Xiang Zhang, Jian Luo, Jingzhi Lu, Jian Zhang
We report a facile approach to fine tune the redox potentials of π-conjugated porous organic frameworks (POFs) by copolymerizing carbazolic electron donor (D) and electron acceptor (A) based comonomers at different ratios. The resulting carbazolic copolymers (CzCPs) exhibit a wide range of redox potentials that are comparable to common transition-metal complexes and are used in the stepwise photocatalytic degradation of lignin β-O-4 models. With the strongest oxidative capability, CzCP100 (D:A = 0:100) exhibits the highest efficiency for the oxidation of benzylic β-O-4 alcohols, while the highly reductive CzCP33 (D:A = 66:33) gives the highest yield for the reductive cleavage of β-O-4 ketones. CzCPs also exhibit excellent stability and recyclability and represent a class of promising heterogeneous photocatalysts for the production of fine chemicals from sustainable lignocellulosic biomass.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01010

DOI: 10.1021/acscatal.7b01010

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.