4 years ago

Scaling Relations and Kinetic Monte Carlo Simulations To Bridge the Materials Gap in Heterogeneous Catalysis

Scaling Relations and Kinetic Monte Carlo Simulations To Bridge the Materials Gap in Heterogeneous Catalysis
Mikkel Jørgensen, Henrik Grönbeck
Scaling relations combined with kinetic Monte Carlo simulations are used to study catalytic reactions on extended metal surfaces and nanoparticles. The reaction energies are obtained by density functional theory calculations, where the site-specific values are derived using generalized coordination numbers. This approach provides a way to handle the materials gap in heterogeneous catalysis. CO oxidation on platinum is investigated as an archetypical reaction. The kinetic simulations reveal clear differences between extended surfaces and nanoparticles in the size range of 1–5 nm. The presence of different types of sites on nanoparticles results in a turnover frequency that is orders of magnitude larger than on extended surfaces. For nanoparticles, the reaction conditions determine which sites dominate the overall activity. At low pressures and high temperatures, edge and corner sites determine the catalytic activity, whereas facet sites dominate the activity at high pressures and low temperatures. Furthermore, the reaction conditions are found to determine the particle-size dependence of the turnover frequency.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01194

DOI: 10.1021/acscatal.7b01194

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.