4 years ago

MoS2/WS2 Heterojunction for Photoelectrochemical Water Oxidation

MoS2/WS2 Heterojunction for Photoelectrochemical Water Oxidation
Na Ni, Federico M. Pesci, Peter C. Sherrell, Kanudha Sharda, Cecilia Mattevi, Pawel Palczynski, Maria S. Sokolikova, Francesco Reale, Chiara Grotta
The solar-assisted oxidation of water is an essential half reaction for achieving a complete cycle of water splitting. The search of efficient photoanodes that can absorb light in the visible range is of paramount importance to enable cost-effective solar energy-conversion systems. Here, we demonstrate that atomically thin layers of MoS2 and WS2 can oxidize water to O2 under incident light. Thin films of solution-processed MoS2 and WS2 nanosheets display n-type positive photocurrent densities of 0.45 mA cm–2 and O2 evolution under simulated solar irradiation. WS2 is significantly more efficient than MoS2; however, bulk heterojunctions (B-HJs) of MoS2 and WS2 nanosheets results in a 10-fold increase in incident-photon-to-current-efficiency, compared to the individual constituents. This proves that charge carrier lifetime is tailorable in atomically thin crystals by creating heterojunctions of different compositions and architectures. Our results suggest that the MoS2 and WS2 nanosheets and their B-HJ blend are interesting photocatalytic systems for water oxidation, which can be coupled with different reduction processes for solar-fuel production.

Publisher URL: http://dx.doi.org/10.1021/acscatal.7b01517

DOI: 10.1021/acscatal.7b01517

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.