3 years ago

Direct catalytic hydroxylation of benzene to phenol catalyzed by vanadia supported on exfoliated graphitic carbon nitride

Direct catalytic hydroxylation of benzene to phenol catalyzed by vanadia supported on exfoliated graphitic carbon nitride
Direct hydroxylation of benzene is a sustainable and promising strategy to synthesize phenol. The key topic for the catalytic process is the development of an efficient heterogeneous catalyst. In this work, graphitic carbon nitride (g-C3N4) material was exfoliated and protonated, and then utilized as a support to load vanadia by using VO(acac)2 as a precursor. The synthesized materials were characterized by several techniques including N2 adsorption–desorption, XRD, TG, TEM, SEM, FT-IR, UV–vis, and XPS. The results exhibited that the exfoliation as a simple method could improve the surface area and pore volume of g-C3N4, while protonation was able to facilitate to increase the loading amount of vanadia. In hydroxylation of benzene to phenol in the presence of H2O2, the vanadia catalysts supported on peg-C3N4 demonstrated superior catalytic activity to the catalysts supported on the pristine g-C3N4. Moreover, the effects of protonation conditions including acid concentration and temperature on the final catalytic activity have also been investigated. Under optimized conditions, a maximum yield of phenol reached 15% at 60°C.

Publisher URL: www.sciencedirect.com/science

DOI: S0926860X17304441

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.