3 years ago

Adjusted interactions of nickel nanoparticles with cobalt-modified MgAl2O4-SiC for an enhanced catalytic stability during steam reforming of propane

Adjusted interactions of nickel nanoparticles with cobalt-modified MgAl2O4-SiC for an enhanced catalytic stability during steam reforming of propane
Steam reforming of propane (SRP) for the stable production of hydrogen-rich reformates was investigated using the Ni-supported on the cobalt-modified SiC-embedded MgAl2O4 support (denoted as NCMAS). The adjusted interactions of the Ni nanoparticles with the cobalt-modified SiC-embedded MgAl2O4 (MgAl2O4-SiC) and its crystallite size distributions largely altered the catalytic activity and stability of NCMAS. The introductions of SiC on the NCMAS, where SiC has a higher thermal conductivity, also increased the dispersion of smaller MgAl2O4 grains with the less formations of inactive NiAl2O4 species, which resulted in the higher catalytic activity with smaller formations of unreformed light hydrocarbons. The positive roles of cobalt promoter on the MgAl2O4-SiC matrices were mainly attributed to the suppressed aggregation of nickel nanoparticles by their strong and intimate interactions with the cobalt-modified MgAl2O4. The effects of cobalt promoter at an optimal 5wt%Co in the MgAl2O4-SiC (NCMAS(5)) enhanced the oxidation-resistance of the nickel nanoparticles with less formations of inactive metal aluminates by being reversibly re-reduced under the SRP reaction conditions. These phenomena further lessen coke depositions by intimately interacting with highly dispersed oxophilic cobalt or cobalt aluminate species. The optimal NCMAS(5) was applied to derive kinetic parameters using Langmuir-Hinshelwood-Hougen-Watson (LHHW) mechanisms, and the reasonable activation energy of 73 kJ/mol and optimal operating parameters to maximize hydrogen production by SRP reaction was estimated in terms of the reaction conditions such as space velocity, feed ratio and reaction temperature.

Publisher URL: www.sciencedirect.com/science

DOI: S0926860X17304726

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.