3 years ago

Controlled silylation of MoVTeNb mixed oxide catalyst for the selective oxidation of propane to acrylic acid

Controlled silylation of MoVTeNb mixed oxide catalyst for the selective oxidation of propane to acrylic acid
Acrylic acid is an important industrial chemical, and efficient catalysts for its direct preparation by propane oxidation are highly desirable. For this purpose, neutral silica networks were introduced on the surface of MoVTeNb mixed oxide catalysts by controlled silylation using a methyl silicate oligomer (MS-51). The modified catalysts gave ∼56.5% yield of acrylic acid with a selectivity of 77.1% in the oxidation of propane at 380°C. The catalysts were characterized by X-ray fluorescence, Fourier-transform infrared spectroscopy, Brunauer–Emmett–Teller specific surface area, X-ray diffraction (Rietveld analysis), pyridine desorption, and scanning electron microscopy. MoVTeNb mixed oxide was found to be composed of 90.9% M1 phase and 2.3% M2 phase, and upon silylation, the surface was uniformly covered by a thin SiO2 layer with 0.14 molar ratio with respect to Mo and an estimated thickness of 2.4nm. The amount of acid sites decreased after the first three silylation cycles, but was not affected by repeated cycles. The results of the kinetic study based on the comparison of the simulated contribution of each side reaction were consistent with those of the model reactions using acrylic acid and other reactants: the controlled silylation effectively suppressed acrylic acid oxidation, especially after repeated silylation cycles, which is responsible for the superior performance of the silylated catalysts. Considering the relatively large size of acrylic acid compared to propane and the efficient propane activation by silica-covered catalysts, the controlled silylation was proposed to have two roles, by which further consecutive oxidation is prevented effectively to exhibit excellent performance in oxidation of propane: i) to block the unfavorable acidic sides, ii) to generate a silica layer with pore mouth openings on the surface of MoVTeNb mixed oxide, which allow the entrance of propane but inhibit re-entrance of the produced acrylic acid.

Publisher URL: www.sciencedirect.com/science

DOI: S0926860X17304428

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.