3 years ago

Design of selective hydrocracking catalysts for BTX production from diesel-boiling-range polycyclic aromatic hydrocarbons

Design of selective hydrocracking catalysts for BTX production from diesel-boiling-range polycyclic aromatic hydrocarbons
Various metallic components (Ni, NiSn, NiW-S, CoMo-S and NiMo-S) with different hydrogenation (HYD) activities were supported on H-Beta or hybrid zeolites (BZ(x), where x denotes the weight percentage of H-ZSM-5 in the physical mixture of H-Beta and H-ZSM-5). These bifunctional catalysts were applied to the hydrocracking (HYC) of tetralin in a fixed-bed down-flow reactor at 4MPa as a model reaction for polycyclic aromatic hydrocarbon (PAH) conversion to high-value benzene, toluene, and xylenes (BTX). From the HYC of tetralin over the series of metals/H-Beta catalysts, it was found that CoMo-S/H-Beta and NiMo-S/H-Beta, whose metallic components show moderate activities in the HYD of tetralin, exhibit higher BTX yields than the other catalysts whose metals have excessively high or low HYD activities. However, these catalysts show limited BTX yield (∼47.3wt% at 425°C) owing to the large coproduction of alkylbenzenes other than BTX. When metals with moderate HYD activities are supported on the hybrid zeolites, the BTX yield is significantly enhanced by the effect of H-ZSM-5 in the dealkylation of alkylbenzenes into BTX. NiMo-S/BZ(10) provides a BTX yield of 54.3wt% and a total 1-ring aromatic yield as high as 63.8wt% (corresponding to 94.4% of the theoretical maximum of 67.6wt%) at 425°C. Therefore, the NiMo-S/BZ(10) catalyst, where the metallic and acidic functions and structural properties of the zeolite are well balanced, show promise as an HYC catalyst for the hydroconversion of PAHs into high-value BTX mixtures.

Publisher URL: www.sciencedirect.com/science

DOI: S0926860X1730399X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.