3 years ago

Direct deoxygenation of lignin model compounds into aromatic hydrocarbons through hydrogen transfer reaction

Direct deoxygenation of lignin model compounds into aromatic hydrocarbons through hydrogen transfer reaction
A new route is reported for the direct deoxygenation of lignin model compounds to aromatic hydrocarbons via the catalytic hydrogen transfer reactions over Ru/Nb2O5-SiO2 catalyst with 2-PrOH as a hydrogen donor. It is found that Ru/Nb2O5-SiO2 catalyst is active for the hydrodeoxygenation of p-cresol with 98.5% conversion and 84.0% yield of toluene at 230°C, owing to the significant promotion effect of NbOx species on CO bond cleavage and the proper transfer hydrogenation activity of Ru. Furthermore, Ru/Nb2O5-SiO2 catalyst also shows excellent performances in the transfer hydrodeoxygenation of various lignin model compounds such as 2-methoxy-4-methyl phenol, benzyl phenyl ether (α-O-4 model compound), 2-(2-methoxyphenyl)oxy-1-phenethanol (β-O-4 model compound) and even the real lignin extracted from birch, into aromatic hydrocarbons with 2-PrOH as the hydrogen donor. The reaction pathway studies of these model compounds demonstrate that the direct deoxygenation (DDO) is the main reaction route over Ru/Nb2O5-SiO2 catalyst in the presence of 2-PrOH. Here, using 2-PrOH as a hydrogen source is found to be more selective to aromatic hydrocarbons than using molecular hydrogen. This work provides a new way for the high selective production of aromatic hydrocarbons from renewable lignin via the catalytic hydrogen transfer reactions.

Publisher URL: www.sciencedirect.com/science

DOI: S0926860X17303708

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.