3 years ago

Catalytic combustion of methane over Pd/SnO2 catalysts

Catalytic combustion of methane over Pd/SnO2 catalysts
SnO2-supported Pd catalysts were prepared and the effects of the support calcination temperature on the subsequent catalytic activity during methane combustion were investigated. The physicochemical properties of the Pd/SnO2 were characterized by X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, oxygen temperature-programmed desorption and CH4 temperature-programmed surface reaction. Only crystalline Pd species were found on the catalysts fabricated from the supports calcined above 800 °C. It was also determined that lattice geometry matching between PdO and SnO2 in the catalyst made with a support calcined at 1200 °C facilitated oxygen activation from SnO2 to vacant oxygen sites on the PdO/Pd surface via the back-spillover of oxygen. This effect in turn enhanced the catalytic combustion process. The activity of this material was clearly increased compared with the catalysts that did not exhibit lattice matching between the PdO and support.

Publisher URL: www.sciencedirect.com/science

DOI: S187220671762864X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.