3 years ago

Tuning the growth of Cu-MOFs for efficient catalytic hydrolysis of carbonyl sulfide

Tuning the growth of Cu-MOFs for efficient catalytic hydrolysis of carbonyl sulfide
Development of the high activity, promoter-free catalysts for carbonyl sulfide (COS) hydrolysis is important for the efficient utilization of various feedstocks. In this study, the Cu-based metal-organic framework HKUST-1 is synthesized by a simple and mild anodic-dissolution electrochemical method. The physical and chemical properties of the samples are characterized by several techniques, including scanning electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller analysis and X-ray photoelectron spectroscopy. The results reveal that the synthesis voltage plays a crucial role in controlling the morphology of the resulting HKUST-1. The obtained samples function as novel catalysts for the hydrolysis of COS. A high efficiency, approaching 100%, can be achieved for the conversion of COS at 150 °C over the optimal HKUST-1 synthesized at 25 V. This is significantly higher than that of the sample prepared by the traditional hydrothermal method. Additionally, the effects of the water temperature and the flow velocity on the hydrolysis of COS are also investigated in detail. Finally, a possible reaction pathway of COS hydrolysis over HKUST-1 is also proposed. This work represents the first example of MOFs applied to the catalytic hydrolysis of COS. The results presented in this study can be anticipated to give a feasible impetus to design novel catalysts for removing the sulfur-containing compounds.

Publisher URL: www.sciencedirect.com/science

DOI: S1872206717628742

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.