3 years ago

Recent theoretical progress in the development of perovskite photovoltaic materials

Recent theoretical progress in the development of perovskite photovoltaic materials
Since the seminal work by Kojima et al. in 2009, solar cells based on hybrid organic- inorganic perovskites have attracted considerable attention and experienced an exponential growth, with photovoltaic efficiencies as of today reaching above 22%. Despite such an impressive development, some key scientific issues of these materials, including the presence of toxic lead, the poor long-term device stability under heat and humidity conditions, and the anomalous hysteresis of the current-voltage curves shown by various solar cell devices, still remain unsolved and constitute an important focus of experimental and theoretical researchers throughout the world. Density functional theory calculations have been successfully applied to exploring structural and electronic properties of semiconductors, complementing the experimental results in search and discovery of novel functional materials. In this review, we summarize the current progress in perovskite photovoltaic materials from a theoretical perspective. We discuss design of lead-free perovskite materials, humidity-induced degradation mechanisms and possible origins for the observed solar cell hysteresis, and assess future research directions for advanced perovskite solar cells based on computational materials design and theoretical understanding of intrinsic properties.

Publisher URL: www.sciencedirect.com/science

DOI: S2095495617307106

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.