3 years ago

The critical role of bulk density of graphene oxide in tuning its defect concentration through microwave-driven annealing

The critical role of bulk density of graphene oxide in tuning its defect concentration through microwave-driven annealing
Controlling the concentration of defects in reduced graphene oxide (rGO) to tailor its electrical and physicochemical properties has remained a significant challenge. We report that extent of microwave (MW)-driven annealing of rGO is influenced significantly by its bulk density, which allows us to vary its defect density and crystallite size over wide ranges by controlling this parameter. Extent of annealing was investigated by multiple techniques including Raman and X-ray photoelectron spectroscopies, and electrical conductivity measurements. Improved corrosion resistance of rGOs upon annealing was examined by cyclic voltammetry in H2SO4 electrolyte and temperature-programmed oxidation of rGO. Our results indicate that a low bulk density of rGO facilitates defect annealing, yielding high-quality carbon with 99.3 wt% purity, oxidative resistance as high as graphite powder, and an electrical conductivity of 36,000 S m–1 in the compressed powder form. These results demonstrate a prospective synthesis route for tailor-made nanocarbons from rGO through MW-driven annealing.

Publisher URL: www.sciencedirect.com/science

DOI: S2095495617306629

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.