3 years ago

Synthesis and viscoelastic properties of acrylated hyperbranched polyamidoamine UV-curable coatings with variable microstructures

Synthesis and viscoelastic properties of acrylated hyperbranched polyamidoamine UV-curable coatings with variable microstructures
Exact probe of microstructure of hyperbranched polymers is not either experimentally or theoretically a simple task. A simple yet useful approach was performed here to evaluate structure-performance relationships in hyperbranched polyamidoamine UV-curable (HPAMAMU) coatings. A series of homologous of HPAMAMU having hexamethylenediamine as core were synthesized via a two-step method, and then acrylated with glycidyl methacrylate. Formation of functional groups was confirmed by Fourier transform infrared and nuclear magnetic resonance spectroscopic analyses. To uncover structure-performance relationship, HPAMAMUs with different branching features were synthesized by reacting methyl acrylate and hexamethylenediamine monomers in the first step in 1:1, 1:2, 1:3 and 1:4 ratios. Rheological and calorimetric analyses simply provided with a deeper understanding of molecular-scale changes. Then, 7wt.% of each hyperbranched polymer was added to a system of UV-curable epoxy methacrylate to probe the performance of the resulting coatings in terms of thermal, adhesion, physical and mechanical properties. The presence of such hyperbranched polymers decreased the glass transition temperature of HPAMAMUs, but improved adhesion and flexibility of hard and brittle epoxy acrylate coatings. Particular attention was paid to speculate change in properties in terms of structural evolutions.

Publisher URL: www.sciencedirect.com/science

DOI: S0300944017305866

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.