3 years ago

Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors

Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors
Zheng Li, Zhen Xu, Chao Gao, Weiwei Gao, Chunxiao Zhang, Dan Chang, Tieqi Huang
Carbon textiles are promising electrode materials for wearable energy storage devices owing to their conductive, flexible, and lightweight features. However, there still lacks a perfect choice for high-performance carbon textile electrodes with sufficient electrochemical activity. Graphene fiber fabrics (GFFs) are newly discovered carbon textiles, exhibiting various attractive properties, especially a large variability on the microstructure. Here we report the fabrication of hierarchical GFFs with significantly enlarged specific surface area using a hydrothermal activation strategy. By carefully optimize the activation process, the hydrothermally activated graphene fiber fabrics (HAGFFs) could achieve an areal capacitance of 1060 mF cm–2 in a very thin thickness (150 μm) and the capacitance is easily magnified by overlaying several layers of HAGFFs, even up to a record value of 7398 mF cm–2. Meanwhile, a good rate capability and a long cycle life are also attained. As compared with other carbon textiles, including the commercial carbon fiber cloths, our HAGFFs present much better capacitive performance. Therefore, the mechanically stable, flexible, conductive, and highly active HAGFFs have provided an option for high-performance textile electrodes.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b05092

DOI: 10.1021/acsnano.7b05092

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.