3 years ago

Tin Dioxide Electrolyte-Gated Transistors Working in Depletion and Enhancement Modes

Tin Dioxide Electrolyte-Gated Transistors Working in Depletion and Enhancement Modes
Fabio Cicoira, Clara Santato, Marta Maria Natile, Irina Valitova, Francesca Soavi
Metal oxide semiconductors are interesting for next-generation flexible and transparent electronics because of their performance and reliability. Tin dioxide (SnO2) is a very promising material that has already found applications in sensing, photovoltaics, optoelectronics, and batteries. In this work, we report on electrolyte-gated, solution-processed polycrystalline SnO2 transistors on both rigid and flexible substrates. For the transistor channel, we used both unpatterned and patterned SnO2 films. Since decreasing the SnO2 area in contact with the electrolyte increases the charge-carrier density, patterned transistors operate in the depletion mode, whereas unpatterned ones operate in the enhancement mode. We also fabricated flexible SnO2 transistors that operate in the enhancement mode that can withstand moderate mechanical bending.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b09912

DOI: 10.1021/acsami.7b09912

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.