3 years ago

Polyethylene glycol capped ZnO quantum dots as a fluorescent probe for determining copper(II) ion

Polyethylene glycol capped ZnO quantum dots as a fluorescent probe for determining copper(II) ion
As an important heavy metal ion, copper has the negative influence on otherwise healthy individuals, so establishing a valid way for the highly efficient, sensitive, and quantitative determination of Cu2+ ion becomes an emergency in the environmental analysis. In the present work, water-soluble luminescent ZnO quantum dots (QDs) capped by polyethylene glycol (PEG) have been synthesized by a simple solution method. The PEG capped ZnO QDs (PEG@ZnO QDs) showed yellow fluorescence. High-resolution transmission electron microscopy, UV–vis absorption spectroscopy, Fourier transform infrared spectroscopy, and luminescence spectroscopy were applied to elucidate the properties of the PEG@ZnO QDs. In addition, the yellow fluorescence of the PEG@ZnO QDs was quenched when Cu2+ ion was added to the PEG@ZnO QDs solutions. Therefore, a novel fluorescent probe was designed to detect Cu2+ in water solution. The linear relationships were 10–200nM and 2–10μM, respectively, with the detection limit for Cu2+ at 3.33nM according to 3σ/slope (where σ denotes the standard deviation of the blank measures). The proposed sensor of the PEG@ZnO QDs has also been used in natural water samples to examine the availability of this method. In addition, the quenching mechanism was discussed, which may be attributed to the aggregation induced quenching.

Publisher URL: www.sciencedirect.com/science

DOI: S0925400517311371

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.