3 years ago

Dual-Mode Electronic Skin with Integrated Tactile Sensing and Visualized Injury Warning

Dual-Mode Electronic Skin with Integrated Tactile Sensing and Visualized Injury Warning
Beibei Luo, Qihao Zhou, Yunsheng Fang, Jia Li, Jun Zhou, Bin Hu, Yongjun Xiao, Yanli Zhang, Kui Zhang
Mimicking the pressure-sensing behavior of biological skins using electronic devices has profound implications for prosthetics and medicine. The developed electronic skins based on single response mode for pressure sensing suffer from a rapid decrease in sensitivity with the increase of pressure. Their highly sensitive range covers a narrow part of tolerable pressure range of the human skin and has a weak response to the injurious high pressures. Herein, inspired by a bioluminescent jellyfish, we develop an electronic skin with dual-mode response characteristics, which is able to quantify and map the static and dynamic pressures by combining electrical and optical responses. The electronic skin shows notable changes in capacitance in the low-pressure regime and can emit bright luminescence in the high-pressure regime, which, respectively, imitates the functions of the mechanoreceptors and nociceptors in the biological skin, enabling it to sense gentle tactile and injurious pressure with sensitivities up to 0.66 and 0.044 kPa–1, respectively. The complementary highly sensitive sensing ranges of the electronic skin realize a reliable perception to different levels of pressure, and its mechanically robust and stretchable properties may find a wide range of applications in intelligent robots.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b13016

DOI: 10.1021/acsami.7b13016

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.