3 years ago
Optical recognition and removal of Hg(II) using a new self-chemosensor based on a modified amino-functionalized Al-MOF

We developed a simple self-chemical optical sensor for the monitoring and removal of ultra-trace levels of Hg(II) from aqueous media. The development of this sensor was based on the covalent attachment of amino-functionalized aluminum-based MOF particles with ninhydrin. The new sensor is densely coated with a chelating ligand to permit an ultra-fast, selective, pH-dependent visualization for removal of Hg(II) with detection limit (LOD ∼0.494 μg L−1). Monitoring was accomplished via both a colorimetric signal visible to the naked eye as well as UV–vis absorption spectroscopy. Digital image-based colorimetric analysis has also used as a semi-quantitative analysis for determination the concentration of Hg(II) ions as a fast, sensitive and low-cost colorimetric detection system. Further, the new robust sensor exhibited long-term stability and high reusability. The developed sensor was also successfully applied to the determination and removal of Hg(II) from silver oxide button cells.
Publisher URL: www.sciencedirect.com/science
DOI: S0925400517311449
You might also like
Never Miss Important Research
Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.