3 years ago

Hot Electron Emission Can Lead to Damping of Optomechanical Modes in Core–Shell Ag@TiO2 Nanocubes

Hot Electron Emission Can Lead to Damping of Optomechanical Modes in Core–Shell Ag@TiO2 Nanocubes
Tomas Tamulevičius, Joel Henzie, Hongpan Rong, Sigitas Tamulevičius, Lukas Stankevičius, Domantas Peckus, Mindaugas Juodėnas
Interactions between light and metal nanostructures are mediated by collective excitations of free electrons called surface plasmons, which depend primarily on geometry and dielectric environment. Excitation with ultrafast pulses can excite optomechanical modes that modulate the volume and shape of nanostructures at gigahertz frequencies. Plasmons serve as an optical handle to study the ultrafast electronic dynamics of nanoscale systems. We describe a method to synthesize core–shell Ag@TiO2 nanocubes—while successfully maintaining the size and shape of the nanocube. Transient absorbance spectroscopy (TAS) is used to track photophysical processes on multiple time scales: from the ultrafast creation of hot carriers to their decay into phonons and the formation of optomechanical modes. Surprisingly, the TiO2 shell surrounding the Ag nanocubes caused no appreciable change in the frequency of the optomechanical mode, indicating that mechanical coupling between the core and shell is weak. However, the optomechanical mode was strongly attenuated by the TiO2 shell and TAS decay at ultrafast time scales (0–5 ps) was much faster. This observation suggests that up to ∼36% of the energy coupled into the plasmon resonance is being lost to the TiO2 as hot carriers instead of coupling to the optomechanical mode. Analysis of both ultrafast decay and characterization of optomechanical modes provides a dual accounting method to track energy dissipation in hybrid metal–semiconductor nanosystems for plasmon-enhanced solar energy conversion and chemical fuel generation.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b06667

DOI: 10.1021/acs.jpcc.7b06667

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.